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Front bifurcation in a tristable reaction-diffusion system under periodic forcing

E. P. Zemskov*
Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t, Universitätsplatz 2, 39106 Magdeburg, Germany

~Received 11 August 2003; published 30 March 2004!

A piecewise linear tristable reaction-diffusion equation under external forcing of periodic type is considered.
A special feature of the forcing is that the force moves together with the traveling wave. Front velocity
equations are obtained analytically using matching procedures for the front solutions. It is noted that there is a
restriction in building of null-cline. For each choice of outer branches of null-cline the middle interfacial zone
should not exceed some critical value. When this zone is larger the front does not exist. It is found that in the
presence of forcing there exists a set of front solutions with different phases~matching point coordinates!. The
periodic forcing produces a change in the velocity-versus-phase diagram. For a specific choice of wave
number, there is a bubble formation which corresponds to additional solutions when the velocity bifurcates to
form three fronts.
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I. INTRODUCTION

Reaction-diffusion equations belong to a family of sing
component models of broad applicability. Single-spec
models are of relevance to laboratory studies in particu
but, in the real world, can reflect a telescoping of effe
which influence the reaction kinetics@1#. Fronts, the elemen
tary structures described by reaction-diffusion equations,
known in diverse systems@2,3#. There are two basic types o
fronts: the front propagating into a stable state and into
unstable state. In the first case the front has a unique velo
and in the second case there is a continuum of possible
locities @2#. The example of front propagation into an u
stable state exhibits the Fisher equation with quadratic n
linear reaction term. The equation describing the fro
propagation into a stable state has cubic nonlinearity
named as a bistable model. Our interest in the present p
is in a generalization of the bistable model to a multista
case. Traveling fronts in one-variable multistable reacti
diffusion system were investigated numerically by Leda a
Kawczyński @4#. Besides solutions of the model equation b
ing single traveling fronts, their possible compositions w
different velocities were considered. Such compositions
give monotonic or nonmonotonic solutions. We restrict h
our consideration to the situation with equal velocities a
will consider here a simplest case of the multista
model—a tristable equation, which possesses three loc
stable states with two unstable states. A realistic chem
model of the tristable system consists of two enzymatic
actions inhibited by an excess of their reactant@4#. Two dif-
ferent enzymes catalyze transformations of a reactant
two different products according to the Michaelis-Ment
kinetics. Both active complexes are inhibited by an exces
the reactant. The detailed chemical reaction scheme is
sented in Ref.@4#.

A global view of the nature and multiplicity of front so
lutions in the one-component reaction-diffusion model c
be obtained with a well-known simple particle-in-a-potent
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analogy@2#. This analogy is based on the identification
traveling wave equation with the equation of motion of
classical particle with friction in a potential. For the bistab
system we have a potential of the double-hill shape~a poten-
tial with two maxima! and in the case of tristable model—
triple-hill potential. The triple-well potential was considere
in Ref. @5# to compute quantum-mechanical problems us
instanton solution. In Ref.@6# the nonlinear Klein-Gordon
equation describing a massive real scalar field withu42u6

self-coupling was examined and first-order phase transiti
were studied. In our paper we report on a solution of a d
ferent type of problem, namely the reaction-diffusion equ
tion.

Wave propagation in the reaction-diffusion systems c
be effectively controlled by application of an external forcin
@7–10#. This forcing can be prescribeda priori ~i.e., as a
periodic modulation of excitability@8,9#! or computed on-
line using the data of the momentary state of the medium
closing a feedback loop@10,11#. The phenomenology of this
situation is well known. The properties of an external forci
can be studied experimentally by using the light-sensit
Belousov-Zhabotinsky reaction for which the absorption
transmitted light depends on the concentration of chem
species@11#.

Having in mind that a general irregular forcing may b
represented via Fourier decomposition as a superpositio
harmonically oscillating ‘‘modes,’’ it is instructive to inves
tigate the wave behavior under a periodically oscillati
forcing. The case of a force oscillating with time was exa
ined in Refs.@8,9,12#. A ‘‘pulling effect’’ @12# of the fronts
was found: it was shown that the mean velocity of the p
turbed front is increased as compared to that of the un
turbed front. Effectively, the case of time-dependent forc
describes a time-dependent excitability, i.e., a null-cl
~equal to zero reaction term! with periodically oscillating
constants. In our paper, we study another interesting cas
periodic forcing, namely one that is nonmoving in the c
moving frame, i.e., moving together with the traveling wav
This type of the forcing is given the name ‘‘comoving for
ing.’’ The comoving forcing imagination is as follows. Star
ing from the stationary wave solution the velocity is used
©2004 The American Physical Society08-1
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a control feedback parameter for the deviation of a spati
extended light source from its position at the position at
stationary case, so that the light source moves together
the wave in the excitable medium. The comoving forci
differs in significant ways from parameter-dependent~time
or spatial! forcings. The problem becomes an inhomog
neous one and the general solution of the traveling w
equation acquires an additive part. When the wave spee
equal to zero the system degenerates into the spatially fo
one. In this case the external forcing can be regarded
spatial inhomogeneity which brings the traveling fronts to
stop ~front pinning!.

Our approach will be analytical rather than numeric
This is possible since the nonlinear reaction term is a pie
wise linear function. Piecewise linear dynamics may be u
for a variety of nonlinear systems, and have been emplo
in a number of situations@13–18#. Although piecewise linear
systems are at best caricatures of the desired model dyn
ics, there is the strong advantage that one can reduce
tence problems for traveling waves to root finding for cert
nonlinear algebraic equations. Before the present study
full analytic solutions of the periodically forced tristab
equation were available. In our paper we do not address
general initial value problem. Instead, our interest is in fin
ing the traveling wave solutions and explorations into
influence of the external periodic forcing. The stabili
analysis of the tristable fronts was also performed and will
reported elsewhere.

II. BASIC FRONT SOLUTIONS

We consider one-component one-dimensional medi
which is described by reaction-diffusion equation of pa
bolic type. At first, we shall consider the tristable medium
be homogeneous, i.e., without forcing. A diffusion coefficie
is constant and we set it equal to unity. Thus, our sys
consists of one scalar fieldu5u(x,t) and is described by the
equation

]u~x,t !

]t
5 f ~u!1

]2u~x,t !

]x2 , ~1!

where the reaction termf (u) is a piecewise linear function
f (u)52u2b11b1u(u1u122)1b3u(u2u223) and
b1 ,b3 ,u122 ,u223 are constants. The null-clinef (u)50 is
shown in Fig. 1~a!. Hereu(u) is the Heaviside step function
i.e.,

f ~u!5H 2u2b1 , u,2u122

2u, 2u122,u,u223 ,

2u1b3 , u.u223 .

Due to a piecewise linear character of the reaction termf (u)
we can easily obtain the solution for each piece. We int
duce the traveling frame coordinatej5x2ct, wherec is the
front velocity, and rewrite Eq.~1! for the propagating solu
tion u(j) as
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d2u~j!

dj2
1c

du~j!

dj
1 f ~u!50. ~2!

There exist different front solutions of the tristable equ
tion. First of all, there is a front propagation betweenu
52b1 and u50. This front is described by the bistab
model and we do not consider it here. The second case is
an extension of the bistable front to the tristable model. T
front solution interpolates fromu52b1 as j→2` to u
5b3 asj→1` and consists of three pieces. We shall na
it the 3-front~monotone front!. The distinguishing feature o
the tristable model is the possibility of the front betweenu
52b1 andu50 passing through all three zones. This fro
consists of four pieces and we name it the 4-front~nonmono-
tone front!. First we consider the 3-front. The solution rea

u1~j!5A1el1j2b1 , j<j0 ,

u2~j!5A21e
l1j1A22e

l2j, j0<j<j0* , ~3!

u3~j!5A3el2j1b3 , j>j0* ,

where l652c/26Ac2/411[2c/26g. To construct the
front solutions from three pieces we impose the match
conditions for the functionsui(j),i 51,2,3 and their deriva-
tives dui(j)/dj at pointsj5j0 and j5j0* , where the two
neighbor parts of the solution are patched together:

u1~j0!5u2~j0!, u2~j0* !5u3~j0* !,

du1~j0!

dj
5

du2~j0!

dj
,

du2~j0* !

dj
5

du3~j0* !

dj
, ~4!

i.e., we require continuity of the solution and its derivativ
Two additional equations are obtained using the fact~as was
done in previous works, see Refs.@17#! that we know the
u(j) values of the matching points:

u1~j0!52u122 , u3~j0* !5u223 . ~5!

FIG. 1. Tristable model:~a! piecewise linear null clinef (u)
50 and ~b! corresponding matched piecewise parabolic poten
V(u). Symmetric case,b15b3 andu1225u223.
8-2
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Due to translational invariance of the basic equations,
position of one matching point can be chosen arbitrarily, a
we choosej050. This is a consequence of the homogene
of the model.

From the matching conditions the unknownsA, c, andj0*
may be determined and explicitly expressed as function
the null-cline parametersb1 , b3 , u122 , u223. Reducing the
number of equations from six to one, we obtain a relatio
ship for the front velocityc ~see the Appendix!,

l2lnF b3S 11
c

2g D
2A21

G5l1lnF b3S 12
c

2g D
2~A222A3!

G , ~6!

where constantsA are functions ofc and derived in the Ap-
pendix.

During derivation of Eq. ~6!, it was noted that (1
1c/2g)/A21 and (12c/2g)/(A222A3) must be positive
magnitudes. This condition restricts the choice of the n
cline. So, in the case of stationary front (c50) this restric-
tion condition gives usu122,b1/2 andu223,b3/2, i.e., for
each choice of the outer branches of the null-cline the mid
interfacial zone of the front should not exceed some criti
value ucrit . When the size of the middle interfacial zon
u1221u223[u0 is larger than this critical value the fron
does not exist. A view of the origin of the restriction cond
tion can be obtained with a particle-in-a-potential analo
The reaction term2 f (u) represents a force in this analog
The potentialV(u)5* f (u)du is piecewise parabolic type,

V~u!5H 2u2/22b1u1h1[V1~u!, u,2u122

2u2/21h2[V2~u!, 2u122,u,u223

2u2/21b3u1h3[V3~u!, u.u223 ,

wherehi , i 51, 2 ,3, are arbitrary constants. For the sake
simplicity we consider here the symmetric case. In this s
ation h15h3 and we chooseh15h350. The constanth2
may be determined using the matching condition for the
tential V(u): V2(u223)5V3(u223). From this equation we
obtainh25b3u223. The same condition takes place for a
other matching point atu5u122. The obtained potential is
shown in Fig. 1~b!. The maxima ofV2 andV3 lay at 0 and
b3, respectively. When the maximum of the outer branch
higher than the maximum of the middle zone we obt
V3(b3)2V2(0)5b3

2/22b3u223.0. Hence the above-state
restriction conditionu223,b3/2 follows. Thus, the front be-
tween two outer branches may existonly when the middle
maximum of the potential is alocal one.1

Front solution~3! is presented graphically in Fig. 2. A
earlier in the case of the bistable model when the null clin
symmetric~i.e., whenu1225u223 andb15b3) the front is
stationary (c50), namely this case is shown in Fig. 2, an
when the null-cline is asymmetric~as example, whenu122

1In Ref. @5# was considered a potential with three equal maxim
Therefore, in this case there exist only solutions between two ne
bor maxima.
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5u223 andb1Þb3) the front has nonzero velocity. But now
the front profile may be different from front profile in th
bistable model due to the middle interfacial zone. When
size of this zoneu0 is slightly below the critical valueucrit
the front curve has a knee@Fig. 2~a!#. When u0 is signifi-
cantly less thanucrit , the knee disappears@Fig. 2~b!#. The
knee is more pronounced whenj0* is large enough. And
whenu0→ucrit the matching point coordinatej0* →` and the
tristable front degenerates into bistable front~betweenu
52b3 andu50).2

Now we consider the 4-front. In this case the solution c
be written as

u1~j!5A1el1j2b1 , j<j0 ,

u2~j!5A21e
l1j1A22e

l2j, j0<j<j0* ,

u3~j!5A31e
l1j1A32e

l2j1b3 , j0* <j<j0** , ~7!

u4~j!5A4el2j, j>j0** ,

wherel6 are the same as above. The matching conditi
~4! and ~5! are now supplemented with three additive equ
tions at the third matching pointj5j0** : u3(j0** )
5u4(j0** ),du3(j0** )/dj5du4(j0** )/dj, and u4(j0** )
5u223. The derivation of the front parameters is the same
in the 3-front case and we omit here the details. This fr
solution is shown in Fig. 3. The front curve is similar to th
front profile for the activator variable in the two-compone
bistable system: there is a hump in the front profileu(j).3

The velocity of the 4-front has nonzero value for the sy
metric null-cline case as opposed to the 3-front case and

.
h-

2It should be noted here also that the three-piece front with mid
interfacial zone may exist in the bistable model which is charac
ized by the positive slope coefficient of the middle part of thre
pieces null-cline functionf (u)50 @18#.

3There are no humps in the bistable one-component mode
hump can appear in the case of nonlocal equations~with an integral
convolution in space! @19#.

FIG. 2. Front solution~3! when the middle interfacial zone~a!
u0.ucrit and ~b! u0!ucrit in the case of symmetric null-cline~mo-
tionless fronts!. The dashed lines represent the boundary valueu
52u122 andu5u223.
8-3
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fact can be again explained using the particle-in-a-poten
picture. The speed magnitude is dependent on the null-c
choice. When the size of outer zones becomes larger
front velocity grows also.

III. EXTERNAL PERIODIC FORCING

In this section we estimate the influence of external fo
ing. To introduce an external forcingf̄ (x,t), the model equa-
tion is modified as

]u~x,t !

]t
5 f ~u!1 f̄ ~x,t !1

]2u~x,t !

]x2 . ~8!

Passing to the traveling frame coordinatej we consider the
case when the forcingf̄ is nonmoving in the comoving
frame, i.e., it is a function of onlyj. Then the traveling wave
equation reads

d2u~j!

dj2
1c

du~j!

dj
1 f ~u!1 f̄ ~j!50. ~9!

The simplest case of the periodic forcingf̄ (j) may be pre-
sented by the following expression:f̄ (j)5cos(kj). It is not
necessary for us to assume in the following that the osc
tions of the forcing are slow and the considered fronts m
be described to the needed accuracy within the adiabatic
proximation@12#. We will find the wave solution exactly.

Performing the stability analysis of the fronts in the h
mogeneous equation it can be shown that the 3-fron
stable, whereas the 4-front is unstable. Therefore, it is pe
nent to consider below only 3-front. The 3-front solution
Eq. ~9! takes the form

u1~j!5A1el1j2b11ū~j!, j<j0 ,

u2~j!5A21e
l1j1A22e

l2j1ū~j!, j0<j<j0* , ~10!

u3~j!5A3el2j1b31ū~j!, j>j0* ,

whereū(j)5Rcos(kj)1Qsin(kj) andR,Q5const. To deter-
mine the constantsR andQ we insertū(j) into Eq. ~9! and
collect the terms multiplied by cos(kj) and sin(kj). The result
is

FIG. 3. Front solution~7! in the case of symmetric null-cline.
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k211

~k211!21c2k2
, Q52

ck

~k211!21c2k2
. ~11!

Hence the constantR is always positive. The sign ofQ de-
pends on the combination of parametersck, Q vanishes
when one of these parameters is equal to zero, i.e., for
tionary fronts (c50) or constant forcing (k50).

In the preceding section, we chose one matching po
valuej5j0 equal to zero. However now, in the presence
the j-dependent forcing, the translation invariance of t
model equation is violated and the magnitude of the mat
ing point coordinatej0 cannot be chosen arbitrarily4 or
rather, the front solution depends on this valuej0, i.e., we
have a family of front solutions with differentj0.5 The form
of the velocity equation~6! and the expression~A8! for j0*
remain the same because thej0 dependence appears inA
constants. With this in mind we obtain the following veloci
equation

l2lnH 2b3l2

b1l122g@u1221ū~j0!#
J

5l1lnH 2b3l222g@u2232ū~j0* !#

b1l1 J , ~12!

where the second matching point coordinatej0* is

j0* 5j01
1

l1
lnH 2b3l2

b1l122g@u1221ū~j0!#
J . ~13!

The j0 dependence is present only in the forcing-genera
terms,ū(j). The exponential terms withj0 which arose in
the matching equations were eliminated during the reduc
procedure.

For the sake of simplicity we will now consider the sym
metric model withb15b351 and u1225u223[h. Then
from the restriction conditions@see Eqs.~6! and ~12! for
derivation# (11c/2g)/A21.0 and (12c/2g)/(A222A3)
.0 it follows that

l122g@h1ū~j0!#.0 and l212g@h2ū~j0* !#,0.
~14!

Here were used the relationships 11c/2g52l2/g and 1
2c/2g5l1/g. The next restriction

4If the value ofj0 is chosen arbitrarily, as example,j050, thej0

dependence appears in the forcing termf̄ (j)5cos@k(j2j0)#.
5The appearance of thej0 dependence in the solutions is not

particular feature of the piecewise linear approximation. It is w
known that the nonlinear bistable equationujj1u2u350 has a
front solution u(j)56tanh@(j2j0)/A2#, where j05const is the
center of the wave. Due to translational invariance all solutions w
variable j0 are similar. But when this invariance is violated@by

inserting f̄ (j) term in the equation# the solutions become different
8-4
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FRONT BIFURCATION IN A TRISTABLE REACTION- . . . PHYSICAL REVIEW E 69, 036208 ~2004!
ū~j0!.
l11l2

2g
2h ⇔ c/21gū~j0!.2hg ~15!

is evident from the fact that the coordinatej0* of the second
matching point must be larger than the coordinatej0 of the
first one. It is appropriate at this point to recall that the v
locity equation for fronts in the bistable model~one matching
point at j0 and two fixed points atu571) under forcing
reads@20#

c/21gū~j0!50 ~16!

which is a limiting case of Eq.~15! at j0* 5j0 and h→0.
Sinceh and g are positive quantities the region in the v
locity diagram bounded by restriction condition~15! incor-
porates the bistable front velocity curve described by
~16!. This curve, the velocity-versus-wave-number dep
dencec5c(k) at fixedj0, may be monotonic or oscillating
according to the value of the matching point coordinatej0
@20#. In the bistable model there is no restrictions on t
front velocity.

Together with the first restriction in Eq.~14! the inequal-
ity ~15! yields the validation interval forū(j0):

l11l2

2g
2h,ū~j0!,

l1

2g
2h, ~17!

which in the case of stationary fronts~whenc50) reduces to
2h,ū(j0),1/22h. The origin of the restriction condi
tions ~14! is of the same kind as one in the system witho
forcing ~see Sec. I!. This fact permits us to do away with
more sophisticated treatment of these restrictions and
our attention to the discussion of the velocity equation~12!.
From this equation it follows that the front velocity is
function of wave numberk and phase~matching point coor-
dinate! j0 when the null-cline parameterh is fixed. The
wave number is a control parameter, whereas the front s
tion is uniquely determined by phase value. All solutions
conveniently grouped together in a velocity-versus-ph
diagram. These diagrams are shown in Fig. 4. The velo
dependence~16! for the bistable front is added in the figure
for comparison. Both~for tristable and bistable models!
velocity-versus-phase curves are typified by oscillating
havior aroundc50 axis, so that there exist fronts with pos
tive and negative velocities. However, the velocity curve
the tristable front is irregular in shape nearj0'0.5 @Fig.
4~a!#. This irregularity is easily observable when the wa
number is small enough. As this takes place, a new solu
for the tristable case appears@at j0'0.4 andc50 in Fig.
4~b!#. This solution corresponds to an isolated point on
j02c diagram and presents a stationary front. At this tim
the oscillating curve for the velocity of the tristable fro
becomes more irregularly shaped. The point transforms
the bubble as the control parameter decreases@Fig. 4~c!#, i.e.,
a set of nonstationary front solutions occurs also. The bub
is out of round and grows with decreasing wave number
some values ofk the bubble meets the main oscillation lin
@Fig. 4~d!# and after this breaks it and forms a curve of co
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bined shape@Fig. 4~e!#. The shape of bubble-transforme
branch repeats the main curve with further decreasing con
parameter@Fig. 4~f!#. However, it should be particularly em
phasized that such calculations cannot be carried out w
similar success for sufficiently smallk, because in this cas
the front profile oscillation in the middle interfacial zon
leaves this zone, i.e., there are more than two match
points. In this paper we consider only two matching po
procedures.

The bubble formation and the curve irregularity conve
sion are a characteristic feature of the tristable system. T
are well represented in the case of stationary fronts whec
50. The zeros of the front velocity uniquely characterize t
stationary front solutions and in analogy to solid state ph
ics we call these solutions pinned fronts, so that the zero
the velocity curve indicate pinning positions. Whenc50 the
velocity equation~12! is reduced to

ū~j0* !52ū~j0!, ~18!

FIG. 4. Velocity-versus-phase dependences. The tristable c
~12! and ~13! with symmetric null-cline b15b351 and u122

5u223[h50.1 are denoted by thick line. The bistable case~16!
with the same fixed point coordinates is denoted by thin line. T
values of the control parameter are~a! k52, ~b! k51.43, ~c! k
51.425, ~d! k51.418, ~e! k51.4, ~f! k51.35.
8-5
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E. P. ZEMSKOV PHYSICAL REVIEW E69, 036208 ~2004!
where

j0* 5j02 ln$122@h1ū~j0!#%. ~19!

Inserting the expression for the periodic forcingū(j) into
Eqs.~18! and ~19! after some manipulations we obtain

cos~kj0!

k211
5

1

2
$12exp@2j02~p12pn!/k#%2h,

cos~kj0!

k211
5

1

2
$12exp@2~p12pn!/k#%2h, ~20!

n50,61,62, . . . .

These equations describek2j0 dependences which ar
shown in Fig. 5 in the vicinity of the bifurcation points. I
the range under consideration in this figure the curves
presented byn50 case of Eq.~20!. We notice that there are
two different bifurcations on the interval fromk51.6 to k
51.3. The first bifurcation neark'1.43 corresponds to th
bubble formation on thej0-c diagram~in Fig. 4!. The key
feature of this phenomenon is a multivalued dependenc
the phasej0 on the control parameterk on the interval from
k'1.43 tok'1.42 in Fig. 5. The multivalued curve folds t
form three connected branches. The branches termina
some critical values. The termination points indicate a sp
taneous front transition between two branches when the f
is phase shifted. The second bifurcation atk'1.36 is a pitch-
fork bifurcation and forms two symmetric branches@which
are described by the second equation in Eq.~20! at n50]
with opposite phases along with one asymmetric bra
which changes the sign of the phase at the bifurcation po

It is anticipated that similar bifurcations exist on th
velocity-versus-wave-number diagram at some fixed pha
However, we expect that the phase values for the bifurca
points are different. By these bifurcations forms a pair
counterpropagating fronts which can lead to the formation
complex spatiotemporal patterns in a like manner as for n
equilibrium Ising-Bloch bifurcation of the bistable fron

FIG. 5. Bifurcation diagram for the stationary fronts. The valu
of the null-cline parameters are the same as for Fig. 4. The value
control parameter are sufficiently large,k>1.35. In this case the
front profile oscillations will stop short of reaching the matchi
point coordinates2u122 andu223 @see also a comment after Fig
4~f! in the paper#.
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@21–23#. This effect is of importance because the front bifu
cation may show where in parameter space it should ex
an initial pattern of domains to decay toward a uniform st
and where to develop into a stable traveling wave.

IV. CONCLUSION

Piecewise linear tristable reaction-diffusion equation u
der periodic forcing was considered. Matching procedures
fronts were performed analytically. Exact analytical solutio
were obtained for the propagating front and the front vel
ity. Two basic types of the tristable fronts, monotone a
nonmonotone~the 3- and 4-fronts!, were considered. The
influence of external periodic forcing was estimated. T
simple form of the periodic force cos(kj) was used. The
analysis of forced reaction-diffusion equation predicts sets
possible solutions~fronts with positive, negative, and zer
velocities!. These solutions are distinguished by their pha
~matching point coordinatesj0). The velocity-versus-phas
diagram shows the formation of the additional solution
~bubble formation! for the specific choice of wave numbe
along with basic oscillating curve. This phenomenon cor
sponds to the bifurcation on the phase-versus-wave-num
diagram~at fixed velocity!. The observed bifurcation is th
characteristic feature of the tristable model under perio
forcing and we have every reason to believe that this effec
of importance because it can lead to the formation of co
plex spatiotemporal patterns just as in the bistable syste6

The main effect of the front bifurcation, regarding spatiote
poral patterns, is the formation of stable traveling dom
patterns. The change in the qualitative behavior of patte
can be attributed to the appearance of the front multiplicity
the bifurcation@23#. This implies that along with a front tha
transforms the lower state to the upper state, there ex
another front propagating in the same direction that tra
forms the upper state back to the lower one. A combinat
of the two, using appropriate initial conditions, can yie
diverse traveling domain structures~two fronts following one
another! @23#. We have not explored here the implication
the observed phenomena on pattern formation because
confined ourselves in this paper to solitary traveling front

The external forcing consideration works very well.
Ref. @24# another type of forcing, presented as spatial inh
mogeneitiesf̄ (x), was analyzed to describe a bifurcation
front dynamics. The case of pure temporal forcingf̄ (t) was
considered in Refs.@12,25#. However, when traveling wave
solutions are examined, it makes no significant differen
whether temporalf̄ (t) or spatialf̄ (x) external forcing is em-
ployed, because in both cases we have the same null-c
with time- or space-dependent parameters which indicate
ros of the rate functionf (u). Therefore, the ‘‘traveling forc-
ing’’ f̄ (j) considered in our paper becomes a subject
much specific interest.

6A front bifurcation in the periodically forced complex Ginzburg
Landau equation which describes spatiotemporal modulations o
oscillating medium has been found by Coulletet al. @21#.
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The studies of the tristable model lead to the general
tion of results known earlier in the bistable systems. Mo
over, the solution~3! may describe a pulse wave in a tw
piece system when the third piece of null-cline is coincid
with the first piece, i.e., whenu22352u122 and b352b1
and the pulse interpolates fromu52b1 as j→2` to u
52b1 asj→1`. Naturally, the restriction condition trans
forms into only one equation (u122.b1/2 for the motionless
wave!. Thus, in the case of the pulse wave in the two-pie
system the null-cline must be always asymmetric. This fac
well known in the bistable model with piecewise linear a
cubic polynomialf (u)5u(12u)(u2a) functions@14#: for
a.1/2 the nerve goes dead, i.e., the only trivial traveli
wave solution isu[0. Therefore, we suppose that abov
mentioned restriction for the middle interfacial zone in t
tristable model has the same origin as we have for the p
in the bistable system. We assume also that this restric
holds for the tristable model with continuous~quintic! reac-
tion term f (u).

The approach employed in investigation of the reacti
diffusion equation of parabolic type bears close similarity
those used in the study of fronts in the equation of hyperb
type @16#. Conventional techniques are a great convenie
in this case. It is not improbable that in the tristable hyp
bolic reaction-diffusion equation exist fronts with spatial o
cillations as it was found in the case of front propagation i
a metastable state@16#. The question only arises of whethe
there are significant differences in front propagation in
parabolic and hyperbolic models.

Further investigation of the tristable reaction-diffusio
system is required towards the modeling of the front dyna
ics in a two-component system. The two-component bista
systems have been much studied@15,22,23#. The velocity
diagrams show a pitchfork bifurcation@22,23# and front so-
lutions differ not only in their propagation direction but als
in their internal structure. A complete analytical stabili
analysis of fronts has also been performed@17#. Thus, we
now have the machinery at our disposal to generalize to
two-component case without the need of entering into
merics immediately.
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APPENDIX

1. 3-front

First of all, we calculate the front parameters. Insert
the solution~3! into matching conditions~4!, we write the
equations

A12b15A211A22, ~A1!
03620
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t
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se
n
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e
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le

e
-

A1l15A21l
11A22l

2, ~A2!

A12b152u122 , ~A3!

A21e
l1j0* 1A22e

l2j0* 5A3el2j0* 1b3 , ~A4!

A21l
1el1j0* 1A22l

2el2j0* 5A3l2el2j0* , ~A5!

A3el2j0* 1b35u223 . ~A6!

First we consider Eqs.~A4! and ~A5!. Multiplying Eq. ~A4!
by c/2 and inserting the result into Eq.~A5!, where l6

52c/26g was used, we obtain a pair of equations

A21e
l1j0* 1~A222A3!el2j0* 5b3 , ~A48!

g@A21e
l1j0* 2~A222A3!el2j0* #5

c

2
b3 . ~A7!

By addition and subtraction of Eqs.~A4! and ~A7! we can
eliminate

j0* 5
1

l1 lnF b3S 11
c

2g D
2A21

G5
1

l2 lnF b3S 12
c

2g D
2~A222A3!

G
~A8!

and derive the velocity Eq.~6!.
Now we determine the constantsA. A15b12u122 and

A21,A22 we find from Eqs.~A1! and ~A2!. The procedure is
the same as above. We multiply Eq.~A1! by c/2 and insert
the result into Eq.~A2!, wherel652c/26g was used. The
result reads

~A212A1!1A2252b1 , ~A18!

g@~A212A1!2A22#52
c

2
b1 , ~A9!

and by addition and subtraction of Eqs.~A1! and ~A9! we
obtain the constants

A215
b1

2 S 12
c

2g D2u122 , ~A10!

A2252
b1

2 S 12
c

2g D . ~A11!

From Eq.~A6! we deriveA3 using expressions forA22 and

el2j0* ,

A352b1

~u2232b3!S 12
c

2g D
b3S 12

c

2g D12~u2232b3!

. ~A12!
8-7
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2. Under forcing

From the matching equations it follows that

A1el1j02b15A21e
l1j01A22e

l2j0, ~A13!

A1l1el1j05A21l
1el1j01A22l

2el2j0, ~A14!

A1el1j02b11ū~j0!52u122 , ~A15!

A21e
l1j0* 1A22e

l2j0* 5A3el2j0* 1b3 , @Eq. ~A4!#

A21l
1el1j0* 1A22l

2el2j0* 5A3l2el2j0* , @Eq. ~A5!#

A3el2j0* 1b31ū~j0* !5u223 . ~A16!
c-

cs

.

03620
On rearrangement, the results can be written as

A15@b12u1222ū~j0!#e2l1j0, ~A17!

A215Fb1

2

l1

g
2u1222ū~j0!Ge2l1j0, ~A18!

A2252
b1

2

l1

g
e2l2j0, ~A19!

A35
u2232b32ū~j0* !

b3l1

2g
1u2232b32ū~j0* !

A22. ~A20!
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