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Front bifurcation in a tristable reaction-diffusion system under periodic forcing
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A piecewise linear tristable reaction-diffusion equation under external forcing of periodic type is considered.
A special feature of the forcing is that the force moves together with the traveling wave. Front velocity
equations are obtained analytically using matching procedures for the front solutions. It is noted that there is a
restriction in building of null-cline. For each choice of outer branches of null-cline the middle interfacial zone
should not exceed some critical value. When this zone is larger the front does not exist. It is found that in the
presence of forcing there exists a set of front solutions with different pliessishing point coordinatgsThe
periodic forcing produces a change in the velocity-versus-phase diagram. For a specific choice of wave
number, there is a bubble formation which corresponds to additional solutions when the velocity bifurcates to
form three fronts.
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I. INTRODUCTION analogy[2]. This analogy is based on the identification of
traveling wave equation with the equation of motion of a
Reaction-diffusion equations belong to a family of single-classical particle with friction in a potential. For the bistable
component models of broad applicability. Single-speciesystem we have a potential of the double-hill sheppoten-
models are of relevance to laboratory studies in particulatial with two maxima and in the case of tristable model—a
but, in the real world, can reflect a telescoping of effectstriple-hill potential. The triple-well potential was considered
which influence the reaction kineti€s]. Fronts, the elemen- in Ref.[5] to compute quantum-mechanical problems using
tary structures described by reaction-diffusion equations, arstanton solution. In Ref{6] the nonlinear Klein-Gordon
known in diverse systeni®,3]. There are two basic types of equation describing a massive real scalar field with- u®
fronts: the front propagating into a stable state and into aself-coupling was examined and first-order phase transitions
unstable state. In the first case the front has a unique velocityere studied. In our paper we report on a solution of a dif-
and in the second case there is a continuum of possible véerent type of problem, namely the reaction-diffusion equa-
locities [2]. The example of front propagation into an un- tion.
stable state exhibits the Fisher equation with quadratic non- Wave propagation in the reaction-diffusion systems can
linear reaction term. The equation describing the frontbe effectively controlled by application of an external forcing
propagation into a stable state has cubic nonlinearity anfi7—10]. This forcing can be prescribeal priori (i.e., as a
named as a bistable model. Our interest in the present papperiodic modulation of excitability8,9]) or computed on-
is in a generalization of the bistable model to a multistabldine using the data of the momentary state of the medium by
case. Traveling fronts in one-variable multistable reactionclosing a feedback loof0,11]. The phenomenology of this
diffusion system were investigated numerically by Leda andsituation is well known. The properties of an external forcing
Kawczyrski [4]. Besides solutions of the model equation be-can be studied experimentally by using the light-sensitive
ing single traveling fronts, their possible compositions with Belousov-Zhabotinsky reaction for which the absorption of
different velocities were considered. Such compositions catransmitted light depends on the concentration of chemical
give monotonic or nonmonotonic solutions. We restrict herespecied 11].
our consideration to the situation with equal velocities and Having in mind that a general irregular forcing may be
will consider here a simplest case of the multistablerepresented via Fourier decomposition as a superposition of
model—a tristable equation, which possesses three locallgarmonically oscillating “modes,” it is instructive to inves-
stable states with two unstable states. A realistic chemicaigate the wave behavior under a periodically oscillating
model of the tristable system consists of two enzymatic reforcing. The case of a force oscillating with time was exam-
actions inhibited by an excess of their reactajt Two dif-  ined in Refs.[8,9,12. A “pulling effect” [12] of the fronts
ferent enzymes catalyze transformations of a reactant intwas found: it was shown that the mean velocity of the per-
two different products according to the Michaelis-Mententurbed front is increased as compared to that of the unper-
kinetics. Both active complexes are inhibited by an excess dfurbed front. Effectively, the case of time-dependent forcing
the reactant. The detailed chemical reaction scheme is prelescribes a time-dependent excitability, i.e., a null-cline
sented in Ref[4]. (equal to zero reaction tejmwith periodically oscillating
A global view of the nature and multiplicity of front so- constants. In our paper, we study another interesting case of
lutions in the one-component reaction-diffusion model carperiodic forcing, namely one that is nonmoving in the co-
be obtained with a well-known simple particle-in-a-potentialmoving frame, i.e., moving together with the traveling wave.
This type of the forcing is given the name “comoving forc-
ing.” The comoving forcing imagination is as follows. Start-
*Email address: zemskov@physik.uni-magdeburg.de ing from the stationary wave solution the velocity is used as
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a control feedback parameter for the deviation of a spatially @ ®
extended light source from its position at the position at the V(u)
stationary case, so that the light source moves together witt f(u)

the wave in the excitable medium. The comoving forcing /\/\/\
differs in significant ways from parameter-dependéithe :

or spatial forcings. The problem becomes an inhomoge- !
neous one and the general solution of the traveling wave
equation acquires an additive part. When the wave speed i
equal to zero the system degenerates into the spatially force
one. In this case the external forcing can be regarded as .
spatial inhomogeneity which brings the traveling fronts to a
stop (front pinning.

Our approach will be analytical rather than numerical. F|G. 1. Tristable model(a) piecewise linear null clinef (u)
This is possible since the nonlinear reaction term is a piece:o and (b) corresponding matched piecewise parabolic potential
wise linear function. Piecewise linear dynamics may be use&(u). Symmetric caseh;=b; andu;_,=u,_3.
for a variety of nonlinear systems, and have been employed
in a number of situationgl 3—18. Although piecewise linear 2
S : : ) d7u()  du(é)

ystems are at best caricatures of the desired model dynam +

ics, there is the strong advantage that one can reduce exis- dé? d¢
tence problems for traveling waves to root finding for certain

nonlinear algebraic equations. Before the present study, no There exist different front solutions of the tristable equa-
full analytic solutions of the periodically forced tristable tion. First of all, there is a front propagation between
equation were available. In our paper we do not address the —p, and u=0. This front is described by the bistable
general initial value problem. Instead, our interest is in find-model and we do not consider it here. The second case is just
ing the traveling wave solutions and explorations into thean extension of the bistable front to the tristable model. This
influence of the external periodic forcing. The stability front solution interpolates fromu=—b; as é&——o to u
analysis of the tristable fronts was also performed and will be=p, asé— + and consists of three pieces. We shall name

+f(u)=0. 2)

reported elsewhere. it the 3-front(monotone front The distinguishing feature of
the tristable model is the possibility of the front betwaen
Il. BASIC FRONT SOLUTIONS =—b, andu=0 passing through all three zones. This front

consists of four pieces and we name it the 4-fri@gr@nmono-
We consider one-component one-dimensional mediumtone fronj. First we consider the 3-front. The solution reads
which is described by reaction-diffusion equation of para-
bolic type. At first, we shgll conS|d9r the tr_|stat_)le medpm to ul(g)zAleﬁg—bl, <&,
be homogeneous, i.e., without forcing. A diffusion coefficient
is constant and we set it equal to unity. Thus, our system

. _
consists of one scalar fielt=u(x,t) and is described by the Up(§)=Apet E+ALN & Eo=ésEp, ()
equation
us(§)=Age" f+bs, =4,
au(x,t) f )+a2u(x,t) @
=f(u —_—, .
at ax? where \* = —c¢/2+ \/c?/4+1=—c/2+ y. To construct the

front solutions from three pieces we impose the matching
where the reaction terrf(u) is a piecewise linear function conditions for the functionsi;(¢),i=1,2,3 and their deriva-
f(uy=—u—b;+b;6(u+u;_,)+bg8(u—u,_3) and tivesdu;(§)/d¢ at pointsé= ¢y and £= & , where the two
by,bs,u;_,,u,_5 are constants. The null-clin(u)=0 is  neighbor parts of the solution are patched together:
shown in Fig. 1a). Here §(u) is the Heaviside step function,

ie., u(&o)=Uz(&o), U2(&5)=Us(&5),
—u=by, u<-ui, dug(go) dup(&) — duy(&5) dus(&p) 4
fluy=y —U, —Up_<u<Up_g, d¢ — dé 7 d¢  d¢ @

_U+b3, U>U2,3.

i.e., we require continuity of the solution and its derivative.
Two additional equations are obtained using the fastwas
done in previous works, see Refd7]) that we know the
u(¢) values of the matching points:

Due to a piecewise linear character of the reaction teu)

we can easily obtain the solution for each piece. We intro
duce the traveling frame coordinae-x—ct, wherec is the
front velocity, and rewrite Eq(1) for the propagating solu-
tion u(é) as Ui(€o)=—U1—2, U3(&5)=Uz 3. )
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Due to translational invariance of the basic equations, the @ ®
position of one matching point can be chosen arbitrarily, and u
we choose&,=0. This is a consequence of the homogeneity 2 31
of the model. / o
From the matching conditions the unknowfisc, and & 1
may be determined and explicitly expressed as functions of / 1 /
the null-cline parametets;, bs, u;_,, u,_3. Reducing the : e ‘ ‘ ‘ ‘
number of equations from six to one, we obtain a relation- —4 -2 4 6 8 -4 20 2 ¢ 4
ship for the front velocityc (see the Appendix » g =t 5
c c
B b3 1+ 2‘}/ N b3(1 2’)/) -2 -3
Ain 2A5; =rn 2(An—A3) ]’ 6) FIG. 2. Front solution3) when the middle interfacial zong)

Up=Ugi; and (b) ug<<ug; in the case of symmetric null-clingno-
where constanté are functions oft and derived in the Ap- tionless fronts The dashed lines represent the boundary values
pendix. =—U;_p andu=u,_s.

During derivation of Eg.(6), it was noted that (1
+¢/2y)IA,; and (1—c/2y)/(A,—Az) must be positive =Up_3andb,;#bs) the front has nonzero velocity. But now
magnitudes. This condition restricts the choice of the nullthe front profile may be different from front profile in the
cline. So, in the case of stationary fromt=0) this restric-  bistable model due to the middle interfacial zone. When the
tion condition gives usl;_,<b;/2 andu,_3<by/2, i.e., for ~ size of this zonal, is slightly below the critical valuei
each choice of the outer branches of the null-cline the middighe front curve has a knelérig. 2@]. Whenu, is signifi-
interfacial zone of the front should not exceed some criticacantly less tharug, the knee disappeaf&ig. 2(b)]. The
value uq;. When the size of the middle interfacial zone knee is more pronounced whejf§ is large enough. And
U;_»+U, 3=Ug is larger than this critical value the front whenuy— u;; the matching point coordinatg — « and the
does not exist. A view of the origin of the restriction condi- tristable front degenerates into bistable frabetweenu
tion can be obtained with a particle-in-a-potential analogy.=—b,; andu=0).2
The reaction term-f(u) represents a force in this analogy.  Now we consider the 4-front. In this case the solution can
The potentialV(u) = [f(u)du is piecewise parabolic type, be written as

—u2/2—b1u+h15V1(u), U<—Ul,2 ul(é’):Ale}\+§_b1’ ggéo,
V(U): _U2/2+hZEV2(U), _U1_2<U<U2_3 )\+§ ¢ .
—U%/2+bau+hs=V3(u), u>u, s, Ua(§) =Rz "+ ALY 5 Go=t<Eo,
whereh;, i=1, 2,3, are arbitrary constants. For the sake of Us(§)=Agiet E4 A E4by, E<iE<gl* . (7)
simplicity we consider here the symmetric case. In this situ-
ation hy=h3; and we choosé,=h;=0. The constanh, Ug(§)=Aget & E=g5%

may be determined using the matching condition for the po-

tential V(u): Vy(uz-3)=V3(uz-3). From this equation we where\™ are the same as above. The matching conditions
obtainh,=bgu, 5. The same condition takes place for an- (4) and(5) are now supplemented with three additive equa-
other matching point ati=u;_,. The obtained potential is tions at the third matching pointé= E8F . ug(éd*
shown in Fig. 1b). The maxima o, andV; lay at 0 and =Uy(E5%),dUg( 8% ) dé=duy(£5%)/dé,  and  uy(&R

b, respectively. When the maximum of the outer branch is_ ;. .~ The derivation of the front parameters is the same as
higher than the maximum of the middle zone we obtainj, the 3-front case and we omit here the details. This front
V3(b3) —V(0)=b3/2—bsu,_3>0. Hence the above-stated sp|ytion is shown in Fig. 3. The front curve is similar to the
restriction conditioru,_3<<bs/2 follows. Thus, the front be-  front profile for the activator variable in the two-component
tween two outer branches may exatly when the middle pjstable system: there is a hump in the front profilg).?
maximum of the potential is bcal one’ The velocity of the 4-front has nonzero value for the sym-

Front solution(3) is presented graphically in Fig. 2. As metric null-cline case as opposed to the 3-front case and this
earlier in the case of the bistable model when the null cline is

symmetric(i.e., whenu,_,=Uu,_5 andb;=b3) the front is

stationary ¢=0), namely this case is shown in Fig. 2, and 2 should be noted here also that the three-piece front with middle

when the null-cline is asymmetri@s example, when; interfacial zone may exist in the bistable model which is character-
ized by the positive slope coefficient of the middle part of three-
pieces null-cline functiorf(u)=0 [18].

lIn Ref.[5] was considered a potential with three equal maxima. 3There are no humps in the bistable one-component model. A
Therefore, in this case there exist only solutions between two neighaump can appear in the case of nonlocal equatinith an integral
bor maxima. convolution in space[19].
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27:U e k241 o= ck @)
REVAW (k2+1)2+c2K?’ (k2+1)24+c2K?

H S
—\4 _\2 1 /? \f\g § Hence the constamR is always positive. The sign @ de-

] pends on the combination of parameterds, Q vanishes
4] when one of these parameters is equal to zero, i.e., for sta-
tionary fronts €=0) or constant forcingK=0).

In the preceding section, we chose one matching point
value = &, equal to zero. However now, in the presence of
the ¢-dependent forcing, the translation invariance of the
model equation is violated and the magnitude of the match-
ing point coordinateé, cannot be chosen arbitrarflyor

rather, the front solution depends on this valige i.e., we

fact can be again explained using the particle-in-a-potential . . N 5
picture. The speed magnitude is dependent on the nuII—cIir?téaVe a family of front solutions with differerd.* The form

choice. When the size of outer zones becomes larger th%f the velocity equatior{6) and the expressioh8) for &
front velocity grows also remain the same because thg dependence appears M

constants. With this in mind we obtain the following velocity

FIG. 3. Front solutior(7) in the case of symmetric null-cline.

equation
Ill. EXTERNAL PERIODIC FORCING
In this section we estimate the influence of external forc- B —ba\"
ing. To introduce an external forcirfgx,t), the model equa- Ain b1>\+—2y[u172+a(§o)]
tion is modified as o
—bsh ™ =2y[uy_3—u(&)]
au(x,t) _ F2u(x,t) =\t — 278 S0 @2
pr =f(u)+f(x,t)+T. (8) bat

Passing to the traveling frame coordingteve consider the Where the second matching point coordingfeis
case when the forcing is nonmovingin the comoving

frame, i.e., it is a function of onlg¢. Then the traveling wave * _ 1 | —bgh~
: g £ =&t —In —— . (13
equation reads A by At —29 U+ U(&)]
d2u du — ' ' ina-
(8 e (&) Ff(u)+T(E) =0, © The &, dependence is present only in the fo_rcmg gengrated
dé&? dé terms,u(&). The exponential terms witlj, which arose in

o the matching equations were eliminated during the reduction

The simplest case of the periodic forcifi¢¢) may be pre- procedure.
sented by the following expressioh(&) = coské). It is not For the sake pf simplicity we will now consider the sym-
necessary for us to assume in the following that the oscillaMetric model withb,=bs=1 andu;_,=uU,_s=7. Then
tions of the forcing are slow and the considered fronts may'om the restriction conditiongsee Eqs.(6) and (12) for
be described to the needed accuracy within the adiabatic agervation (1+c/2y)/Az>0 and (1-c/2y)/(Az—As)
proximation[12]. We will find the wave solution exactly. ~ ~ 0 it follows that

Performing the stability analysis of the fronts in the ho- _ _
mogeneous equation it can be shown that the 3-front isA"—2y[7+u(&y)]>0 and N~ +2y[n—u(&)]1<0.

stable, whereas the 4-front is unstable. Therefore, it is perti- (14)
nent to consider below only 3-front. The 3-front solution of
Eq. (9) takes the form Here were used the relationships-&/2y=—\"/y and 1

B —c/2y=\"/y. The next restriction
ui(é)=Ae" *=bi+u(f), é<éo,

u2(§)=A21e"+§+A22e”_§+U( ), Eo<é<g, (10 4If the value of&, is chosen arbitrarili as examplg,=0, the&,
dependence appears in the forcing teifé) = cogk(¢—&)]-

5The appearance of th&, dependence in the solutions is not a
particular feature of the piecewise linear approximation. It is well
— ] known that the nonlinear bistable equatiog+u—u®=0 has a
whereu(§) =Rcoské)+Qsin(ké) andR,Q=const. To deter-  front solution u(¢) = + tant (é—&)/v2], where &=const is the
mine the constant® andQ we insertu(¢) into Eq.(9) and  center of the wave. Due to translational invariance all solutions with
collect the terms multiplied by cdsf) and sinké). The result  variable &, are similar. But when this invariance is violatgoy
is insertingf(£) term in the equatiohthe solutions become different.

us(§)=Age" +bstu(é), &=¢5,
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_ ANT+HNT o (2) ®)
u(§0)>2—7—77 & Cl2+yu(ée)>—ny (19

0.6
is evident from the fact that the coordinat$ of the second

0.4+
matching point must be larger than the coordingjef the \

first one. It is appropriate at this point to recall that the ve- 0.27
locity equation for fronts in the bistable modehe matching

point at &, and two fixed points ati=¥1) under forcing AT [/1 2\ 3
reads[20] -0V 1

c/2+ yu(&y)=0 (16)

which is a limiting case of Eq(15) at & = ¢, and —0.
Since » and y are positive quantities the region in the ve-
locity diagram bounded by restriction conditidh5) incor-
porates the bistable front velocity curve described by Eq.
(16). This curve, the velocity-versus-wave-number depen-
dencec=c(k) at fixed &,, may be monotonic or oscillating
according to the value of the matching point coordingie
[20]. In the bistable model there is no restrictions on the
front velocity.

Together with the first restriction in Eq14) the inequal-

ity (15) yields the validation interval foa(go):

NN A

T_”<u(§°)<2_y_77’ (17

which in the case of stationary frontwhenc=0) reduces to

—n<u(&y)<1/2—x. The origin of the restriction condi-
tions (14) is of the same kind as one in the system without
forcing (see Sec.)l This fact permits us to do away with a
more sophisticated treatment of these restrictions and turr
our attention to the discussion of the velocity equaiib®).
From this equation it follows that the front velocity is a  FIG. 4. Velocity-versus-phase dependences. The tristable cases
function of wave numbek and phasématching point coor- (12 and (13) with symmetric null-clineb;=bs;=1 and u; ,
dinate &, when the null-cline parameten is fixed. The =u,_3=7=0.1 are denoted by thick line. The bistable c4%6)
wave number is a control parameter, whereas the front solwith the same fixed point coordinates is denoted by thin line. The
tion is uniquely determined by phase value. All solutions arevalues of the control parameter af@ k=2, (b) k=1.43, (c) k
conveniently grouped together in a velocity-versus-phase 1.425,(d) k=1.418, (e) k=1.4, (f) k=1.35.

diagram. These diagrams are shown in Fig. 4. The VeIOCi%ined sha -
. . . : pdFig. 4(e)]. The shape of bubble-transformed
dependencel) for the bistable front is added in the figures y o, repeats the main curve with further decreasing control

for comparison. Both(for tristable and bistable modgls parametefFig. 4(f)]. However, it should be particularly em-
velocity-versus-phase curves are typified by oscillating bepnasized that such calculations cannot be carried out with
havior arounct=0 axis, so that there exist fronts with posi- similar success for sufficiently sma| because in this case
tive and negative velocities. However, the velocity curve forthe front profile oscillation in the middle interfacial zone
the tristable front is irregular in shape negy~0.5 [Fig.  leaves this zone, i.e., there are more than two matching
4(a)]. This irregularity is easily observable when the wavepoints. In this paper we consider only two matching point
number is small enough. As this takes place, a new solutioprocedures.

for the tristable case appedmt £,~0.4 andc=0 in Fig. The bubble formation and the curve irregularity conver-
4(b)]. This solution corresponds to an isolated point on thesion are a characteristic feature of the tristable system. They
&o—c diagram and presents a stationary front. At this timeare well represented in the case of stationary fronts when
the oscillating curve for the velocity of the tristable front =0. The zeros of the front velocity uniquely characterize the
becomes more irregularly shaped. The point transforms tstationary front solutions and in analogy to solid state phys-
the bubble as the control parameter decrefiSigs 4(c)], i.e.,  ics we call these solutions pinned fronts, so that the zeros of
a set of nonstationary front solutions occurs also. The bubbléhe velocity curve indicate pinning positions. Whesa 0 the

is out of round and grows with decreasing wave number. Avelocity equation(12) is reduced to

some values ok the bubble meets the main oscillation line _ _

[Fig. 4(d)] and after this breaks it and forms a curve of com- u(é&s)=—u(&o), (18)
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& [21-23. This effect is of importance because the front bifur-
0 cation may show where in parameter space it should expect
0.67 an initial pattern of domains to decay toward a uniform state
and where to develop into a stable traveling wave.
0.4
0.2 IV. CONCLUSION
k Piecewise linear tristable reaction-diffusion equation un-
. ‘ ‘ ‘ der periodic forcing was considered. Matching procedures of
0 1.3 71_4 15 1.6 fronts were performed analytically. Exact analytical solutions

were obtained for the propagating front and the front veloc-
FIG. 5. Bifurcation diagram for the stationary fronts. The valuesity. Two basic types of the tristable fronts, monotone and
of the null-cline parameters are the same as for Fig. 4. The values ¢fonmonotone(the 3- and 4-fronts were considered. The
control parameter are sufficiently large=1.35. In this case the influence of external periodic forcing was estimated. The
front profile oscillations will stop short of reaching the matching simple form of the periodic force cds]) was used. The
point coordinates-u;_, andu,_3 [see also a comment after Fig. analysis of forced reaction-diffusion equation predicts sets of

4(f) in the paper. possible solutiongfronts with positive, negative, and zero
velocitieg. These solutions are distinguished by their phases

where (matching point coordinate&,). The velocity-versus-phase
_ diagram shows the formation of the additional solution set

& =&~ In{1-2[n+u(&) ]} (19 (bubble formatioh for the specific choice of wave number

_ along with basic oscillating curve. This phenomenon corre-
Inserting the expression for the periodic forcingé) into  sponds to the bifurcation on the phase-versus-wave-number
Egs.(18) and(19) after some manipulations we obtain diagram(at fixed velocity. The observed bifurcation is the
dke) 1 characteristic feature of the tristable model under periodic
COSK&o) forcing and we have every reason to believe that this effect is
K+l it exi 28— (m+2mn)/k]} =, of importance because it can lead to the formation of com-
plex spatiotemporal patterns just as in the bistable systems.
cogké,) 1 The main effect _of the front bi_furcation, regarding_spatioterr_]-
———= {l—exd —(w+2mn)/K]}— 7, (20 poral patterns, is the formation of stable traveling domain
k“+1 2 patterns. The change in the qualitative behavior of patterns
can be attributed to the appearance of the front multiplicity at
n=0+1+2,.... the bifurcation[23]. This implies that along with a front that
) ) ) transforms the lower state to the upper state, there exists
These equations describe- ¢, dependences which are gnqiher front propagating in the same direction that trans-
shown in Fig. 5 in the vicinity of the bifurcation points. In {5 ms the upper state back to the lower one. A combination
the range under consideration in this figure the curves args the two, using appropriate initial conditions, can yield
presented by=0 case of Eq(20). We notice that there are i erse traveling domain structurésio fronts following one
two different bifurcations on the interval fro=1.6 tok  4n5they [23]. We have not explored here the implication of
=1.3. The first bifurcation nest~1.43 corresponds to the the ghserved phenomena on pattern formation because we
bubble formation on theo-c diagram(in Fig. 4). The key  confined ourselves in this paper to solitary traveling fronts.
feature of this phenomenon is a muItlvaIueq dependence of The external forcing consideration works very well. In
the phase, on the control parametdron the interval from  Ref [24] another type of forcing, presented as spatial inho-
k~1.43 tok~1.42 in Fig. 5. The multivalued curve folds to rg&ogeneities‘(x), was analyzed to describe a bifurcation of

form three connected branches. The branches terminate ) —
some critical values. The termination points indicate a sponiront dynamics. The case of pure temporal forciifg) was

taneous front transition between two branches when the froffonsidered in Refd.12,23. However, when traveling wave
is phase shifted. The second bifurcatiorkat1.36 is a pitch- ~ selutions are examined, it makes no significant difference
fork bifurcation and forms two symmetric branchashich ~ Whether temporal(t) or spatialf(x) external forcing is em-
are described by the second equation in &§) at n=0] ployed, because in both cases we have the same null-cline
with opposite phases along with one asymmetric branchvith time- or space-dependent parameters which indicate ze-
which changes the sign of the phase at the bifurcation poinfos of the rate functiori(u). Therefore, the “traveling forc-

It is anticipated that similar bifurcations exist on theing” f(£&) considered in our paper becomes a subject of
velocity-versus-wave-number diagram at some fixed phasesmuch specific interest.
However, we expect that the phase values for the bifurcation
points are different. By these bifurcations forms a pair of
counterpropagating fronts which can lead to the formation of A front bifurcation in the periodically forced complex Ginzburg-
complex spatiotemporal patterns in a like manner as for nontandau equation which describes spatiotemporal modulations of an
equilibrium Ising-Bloch bifurcation of the bistable fronts oscillating medium has been found by Coukgtal. [21].
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The studies of the tristable model lead to the generaliza- ANT=A N T+ AN, (A2)
tion of results known earlier in the bistable systems. More-
over, the solution3) may describe a pulse wave in a two- Ai—by=—u;_,, (A3)

piece system when the third piece of null-cline is coincident

with the first piece, i.e., when, 3=—u;_, andbz=—b; N N A

and the pulse interpolates from=—b; as é—— to u Azi€” f0FAxe” S0 =Age" “0+Dg, (A4)
=—Dh, asé— + . Naturally, the restriction condition trans- o . .

forms into only one equatiorug _,>b,/2 for the motionless A Tet fo+ A NTeN fo=AgnTer Do, (AD)
wave. Thus, in the case of the pulse wave in the two-piece

system the null-cline must be always asymmetric. This fact is Azet f0+by=u,_s. (AB)

well known in the bistable model with piecewise linear and
cubic polynomialf(u)=u(1-u)(u—a) functions[14]: for  First we consider EqgA4) and(A5). Multiplying Eq. (A4)
a>1/2 the nerve goes dead, i.e., the only trivial travelingby c/2 and inserting the result into EGA5), where \™

wave solution isu=0. Therefore, we suppose that above- = —¢/2+ y was used, we obtain a pair of equations
mentioned restriction for the middle interfacial zone in the
tristable model has the same origin as we have for the pulse A21e)‘+§3+(A22—A3)e”753 =bs, (A4")

in the bistable system. We assume also that this restriction

holds for the tristable model with continuo(uintic) reac- c

tion term f (u). A &~ (Ay—Ag)eh ©]=2by. (A7)
The approach employed in investigation of the reaction- 2

diffusion equation of parabolic type bears close similarity to . ]

those used in the study of fronts in the equation of hyperboli®Y addition and subtraction of EqéA4) and (A7) we can

type [16]. Conventional techniques are a great conveniencgliminate

in this case. It is not improbable that in the tristable hyper-

bolic reaction-diffusion equation exist fronts with spatial os- < _c
o . ; S bs| 1+ bs| 1
cillations as it was found in the case of front propagation into L 1 2y 1 2y
a metastable sta{d6]. The question only arises of whether €0 :Fln 2A,; N 2(Ap—Ay)
there are significant differences in front propagation in the (A8)

parabolic and hyperbolic models.

Further investigation of the tristable reaction-diffusion and derive the velocity Eq6).
system is required towards the modeling of the front dynam- Now we determine the constants A;=b;—u,;_, and
ics in a two-component system. The two-component bistabl@,, ,A,, we find from Eqs(Al) and(A2). The procedure is
systems have been much studigih,22,23. The velocity  the same as above. We multiply E@1) by c¢/2 and insert

diagrams show a pitchfork bifurcatid22,23 and front so-  the result into Eq(A2), where\ == —c/2+ y was used. The
lutions differ not only in their propagation direction but also result reads

in their internal structure. A complete analytical stability

analysis of fronts has also been performéd]. Thus, we (Ay;—Ap)+A=—by, (A1)
now have the machinery at our disposal to generalize to the

two-component case without the need of entering into nu- c

merics immediately. M(Az— A1) —Ag] =~ 5Dy, (A9)

and by addition and subtraction of Eq#&1) and (A9) we
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APPENDIX From Eq.(A6) we deriveA; using expressions foh,, and
N &
1. 3-front e
First of all, we calculate the front parameters. Inserting
the solution(3) into matching conditiong4), we write the (Uz-5—Dbg)| 1 2y
equations Az=—by (A12)
bs| 1—=—|+2(u,_3—b
Ap—=by=Ay+ Ay, (AL) 3( 2y (Uz-5bs)
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2. Under forcing
From the matching equations it follows that

At fo—p = Ayet fot ALet o, (A13)
AnTe o=, teM for AN e fo, (Al4)
Arer fo—by+u(£)=—us_y, (A15)
Ajer 0+ Anpet =Azet ©+bs, [Eq. (Ad)]
AN TeN AN TN =AM £, [Eq. (A5)]
Age)‘7§3+b3+a(§3)=u2,3. (Al6)

PHYSICAL REVIEW E69, 036208 (2004

On rearrangement, the results can be written as

Alz[bl_ulfz_a(fo)]efvfoy (A17)
b, AT _
21~ %7‘“1—2‘“(%0) e M, (A18)
b At
22—_779 Ao, (A19)
T ek
Uy 3—bz—u(&p) (A20)

Az= Ag.
3 b3)\++u et 22
2y 2-37 D3 0
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